Q. 2 a. Prove by mathematical induction $\mathrm{n}^{4}-4 \mathrm{n}^{2}$ is divisible by 3 for $\mathrm{n} \geq 0$.

Answer:
Basic step: For $n=0, n^{3}-n=0$ which is divisible by 3 .
Induction hypothesis: Let $\mathrm{p}(\mathrm{n})=\mathrm{n}^{3}-\mathrm{n}$ is divisible by 3 .
Induction step: Let us prove this for ($\mathrm{n}+1$) also.
Then $p(n+1)=(n+1)^{3}-(n+1)$

$$
\begin{aligned}
& =\left(n^{3}+3 n^{2}+3 n+1\right)-(n+1) \\
& =n^{3}+3 n^{2}+3 n-n \\
& =\left(n^{3}-n\right)+3\left(n^{2}+n\right)
\end{aligned}
$$

Now $\left(n^{3}-n\right)$ is divisible by 3 as $p(n)$ is true by induction hypothesis. Also $3\left(n^{2}+\right.$
n) is a multiple of 3 and hence divisible by 3 .
Thus $\mathrm{p}(\mathrm{n})=\mathrm{n}^{3}-\mathrm{n}$ is divisible by 3 for all $\mathrm{n} \geq 0$.
b. What is the need to study Automata Theory in computer science?

Answer: Page Number 6, 7 of Text Book

Q. 3 a. Minimize the following DFA having state q_{5} as final state:

Present	Next State	
State	Input 0	Input 1
q_{0}	q_{1}	q_{2}
q_{1}	q_{3}	q_{4}
q_{2}	q_{5}	q_{6}
q_{3}	q_{3}	q_{4}
q_{4}	q_{5}	q_{6}
q_{5}	q_{3}	q_{4}
q_{6}	q_{5}	q_{6}

Answer:

$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\right\}$, since q_{5} is the final state.
$\Pi_{0}=\left(q_{5}, Q-q_{5}\right)$ is the 0-equivalence class.

Construction of 1-equivalence class:

As $\delta\left(\mathrm{q}_{0}, 0\right)=\mathrm{q}_{1}$ and $\delta\left(\mathrm{q}_{0}, 1\right)=\mathrm{q}_{2}$, and both q_{1} and q_{2} are non final states. $\delta\left(\mathrm{q}_{1}, 0\right)=\mathrm{q}_{3}$ and $\delta\left(\mathrm{q}_{1}, 1\right)=\mathrm{q}_{4}$, and both q_{3} and q_{4} are non final states. Thus $\mathrm{q}_{0} \equiv \mathrm{q}_{1}$
Proceeding in the same way, $\mathrm{q}_{0} \equiv \mathrm{q}_{3}$
Thus $\mathrm{q}_{0} \equiv \mathrm{q}_{1} \equiv \mathrm{q}_{3}$
Again $\delta\left(\mathrm{q}_{2}, 0\right)=\mathrm{q}_{5}$ and $\delta\left(\mathrm{q}_{4}, 0\right)=\mathrm{q}_{5}$ and $\delta\left(\mathrm{q}_{4}, 1\right)=\mathrm{q}_{6}$, and $\delta\left(\mathrm{q}_{2}, 1\right)=\mathrm{q}_{6}$, Hence $\mathrm{q}_{2} \equiv \mathrm{q}_{4}$ and also $\mathrm{q}_{4} \equiv \mathrm{q}_{6}$
Thus $\Pi_{1}=\left[\left\{q_{5}\right\},\left\{q_{0}, q_{1}, q_{3}\right\},\left\{q_{2}, q_{4}, q_{6}\right\}\right]$ is the 1-equivalence class.
Similarly $\Pi_{2}=\left[\left\{\mathrm{q}_{5}\right\},\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{3}\right\},\left\{\mathrm{q}_{2}, \mathrm{q}_{4}, \mathrm{q}_{6}\right\}\right]$ is the 2-equivalence class also.
Hence we have constructed the minimized sate automata as:
$\mathrm{Q}=\left\{\left[\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{3}\right],\left[\mathrm{q}_{2}, \mathrm{q}_{4}, \mathrm{q}_{6}\right],\left[\mathrm{q}_{5}\right]\right\}$ and transition table is given below:

State	Input	
	0	1
$\left[\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{3}\right]$	$\left[\mathrm{q}_{0}, \mathrm{q}_{1}\right.$, $\left.\mathrm{q}_{3}\right]$	$\left[\mathrm{q}_{2}, \mathrm{q}_{4}, \mathrm{q}_{6}\right]$
$\left[\mathrm{q}_{2}, \mathrm{q}_{4}, \mathrm{q}_{6}\right]$	$\left[\mathrm{q}_{5}\right]$	$\left[\mathrm{q}_{2}, \mathrm{q}_{4}, \mathrm{q}_{6}\right]$

$\left[\mathrm{q}_{5}\right]$	$\left[\mathrm{q}_{0}, \mathrm{q}_{1}\right.$, $\left.\mathrm{q}_{3}\right]$	$\left[\mathrm{q}_{2}, \mathrm{q}_{4}, \mathrm{q}_{6}\right]$

b. Design a finite automata for the language $L=\{w \mid w$ is of even length and $\left.w \in(a, b)^{*}\right\}$.

Answer:

We design the transition diagram as follows: a

a
Where \mathbf{q}_{0} and \mathbf{q}_{2} are the two final states.
Hence the finite machine is defined as:
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
$\Sigma=(\mathrm{a}, \mathrm{b})$
δ is the transition function given above.
q_{0} is the initial state.
q_{0} and q_{2} are the two final states.
Q. $4 \quad$ a. Let $V_{N}=\{S, B\}, V_{T}=\{a, b\}, P=\{S \rightarrow a B a, B \rightarrow a B a, B \rightarrow b\}$.

Find the language $\mathrm{L}(\mathrm{G})$ generated by the given grammar.
Answer:
From the given productions we have:
$\mathrm{S} \rightarrow \mathrm{aBa} \rightarrow \mathrm{aba}$, hence $\mathrm{aba} \in \mathrm{L}(\mathrm{G})$.
$\mathrm{S} \rightarrow \mathrm{aBa} \rightarrow \mathrm{aaBaa} \rightarrow$ aaaBaaa $\rightarrow \ldots .$. aa...aBaa...a $\rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{ba}^{\mathrm{n}} \in \mathrm{L}(\mathrm{G})$.
Hence $\left\{\right.$ aba, aabaa, $\left.a^{3} b a^{3}, \ldots ., a^{n} b a^{n}\right\}=\left\{a^{n} b a^{n} \mid n \geq 1\right\} \subseteq L(G) \ldots(1)$
To show that $\mathrm{L}(\mathrm{G}) \subseteq\left\{\mathrm{a}^{\mathrm{n}} \mathrm{ba}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$, we start with $\mathrm{w} \in \mathrm{L}(\mathrm{G})$, the derivation of w starts with S. If $S \rightarrow a B a$ is applied first and then $B \rightarrow b$, we get $w=$ aba . On the other hand if we apply $\mathrm{B} \rightarrow \mathrm{aBa}((\mathrm{n}-1)$ times $)$ and then finally to terminate this we apply $B \rightarrow b$, then w will be of the form $a^{n} b a^{n}$, So $w \in\left\{\right.$ aba, aabaa, $\left.a^{3} b^{3}, \ldots, a^{n} b a^{n}\right\}$. Hence $L(G) \subseteq\left\{a^{n} b a^{n} \mid n \geq 1\right\}$(2)
By (1) and (2) we have $\mathrm{L}(\mathrm{G})=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{ba}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$.
b. Obtain the NFA without epsilon transition corresponding to the following regular expression:

$$
0^{*} 1\left(0+10^{*} 1\right)^{*}
$$

Answer:

Let us construct the NFA as follows:

Hence the NFA M $=\left(\left\{q_{0}, q_{1}, q_{f}\right\},\{0,1\}, \delta,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$, the transition function δ is given above.
Q. 5 a. Construct a regular expression corresponding to the state diagram given below

Answer:

There is only one initial state. Also, there are no null moves. The equations are:

$$
\begin{aligned}
& \mathrm{q}_{1}=\mathrm{q}_{1} 0+\mathrm{q}_{3} 0+\wedge \ldots \ldots .(1) \\
& \mathrm{q}_{2}=\mathrm{q}_{1} 1+\mathrm{q}_{2} 1+\mathrm{q}_{3} 1 \ldots . .(2) \\
& \mathrm{q}_{3}=\mathrm{q}_{2} 0 \ldots \ldots \text { (3) }
\end{aligned}
$$

So, $\mathrm{q}_{2}=\mathrm{q}_{1} 1+\mathrm{q}_{2} 1+\left(\mathrm{q}_{2} 0\right) 1=\mathrm{q}_{1} 1+\mathrm{q}_{2}(1+01) \quad$ (put q_{3} from eq. 3 to eq.2)
Applying Arden's theorem, which says if there is an equation in regular expressions P, Q and R as $\mathrm{R}=\mathrm{Q}+\mathrm{R} . \mathrm{P}$, then the solution is given by $\mathrm{R}=\mathrm{Q} \cdot \mathrm{P}^{*}$.

$$
\mathrm{q}_{2}=\mathrm{q}_{1} 1 .(1+01)^{*}
$$

Also we have

$$
\begin{equation*}
\mathrm{q}_{1}=\mathrm{q}_{1} 0+\mathrm{q}_{3} 0+\wedge=\mathrm{q}_{1} 0+\left(\mathrm{q}_{2} 0\right) 0+\wedge \tag{3}
\end{equation*}
$$

Put the value of q_{2} here which we have obtained above,

$$
\begin{aligned}
\mathrm{q} 1 & =\mathrm{q}_{1} 0+\left(\mathrm{q}_{1} 1(1+01)^{*} 0\right) 0+\wedge \\
& =\mathrm{q}_{1}\left(0+1(1+01)^{*} 00\right)+\wedge \\
\text { Thus } \mathrm{q}_{1} & =\wedge\left(\left(0+1(1+01)^{*} 00\right)^{*}=\left(0+1(1+01)^{*} 00\right)^{*}\right.
\end{aligned}
$$

(By Arden’s
Theorem)
As q_{1} is the only final state, the regular expression corresponding to the given diagram is $\left(0+1(1+01)^{*} 00\right)^{*}$.
b. Consider the following productions representing regular grammar G ,

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{aB}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{c}
\end{aligned}
$$

Find the regular expression corresponding to regular grammar G.

Answer:

Let us construct the language by the given productions:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{a} \text { hence string } \mathrm{w}=\mathrm{a} \in \mathrm{~L} \\
& \mathrm{~S} \rightarrow \mathrm{aA} \rightarrow \mathrm{aaA} \rightarrow a \mathrm{aaA} \rightarrow \ldots \ldots \rightarrow \mathrm{aaa} \ldots . \mathrm{a}^{\mathrm{n}-1} \mathrm{~A} \rightarrow \mathrm{a}^{\mathrm{n}} \in \mathrm{~L} . \\
& \mathrm{S} \rightarrow \mathrm{aA} \rightarrow \mathrm{aaA} \rightarrow \ldots . \rightarrow \mathrm{aaa} \ldots \mathrm{a}^{\mathrm{n}-1} \mathrm{~A} \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{~B} \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{c} \in \mathrm{~L} . \\
& \mathrm{S} \rightarrow \mathrm{aA} \rightarrow \mathrm{aaA} \rightarrow \ldots . \rightarrow \mathrm{aaa} \ldots . \mathrm{a}^{\mathrm{n}-1} \mathrm{~A} \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{~B} \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{bB} \rightarrow \ldots . \mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m}} \in \mathrm{~L} . \\
& \mathrm{S} \rightarrow \mathrm{aA} \rightarrow \mathrm{aaA} \rightarrow \ldots . \rightarrow \mathrm{aaa} \ldots . \mathrm{a}^{\mathrm{n}-1} \mathrm{~A} \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{~B} \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{bB} \rightarrow \ldots \rightarrow \mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m}} \mathrm{~B} \rightarrow \\
& \mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m} \mathrm{c} \in \mathrm{~L} .} \\
& \text { Hence } \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m}} \mathrm{U} \mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m}} \mathrm{c} \mid \mathrm{n} \geq 1, \mathrm{~m} \geq 0\right\} \\
& \text { It's regular expression can be written as } \mathbf{a}^{+} \mathbf{b}^{*}+\mathbf{a}^{+} \mathbf{b}^{*} \mathbf{c}=\mathbf{a}^{+} \mathbf{b}^{*}(\varepsilon+\mathbf{c}) .
\end{aligned}
$$

Q. 6 a. Construct a PDA to accept strings containing equal number of 0's and 1's by null store. Show the moves of the PDA for the input string '011001'.

Answer:

Let $\mathrm{M}=\left\{\left(\mathrm{q}_{0}, \mathrm{q}_{1}\right), \Sigma=(0,1),\left(\mathrm{a}, \mathrm{b}, \mathrm{Z}_{0}\right), \delta,\left\{\mathrm{q}_{\mathrm{f}}\right\}, \mathrm{q}_{0}, \mathrm{Z}_{0}\right\}$ where Z_{0} is the special stack symbol which says that stack is empty.
Now we write the push and pop operations as follows:

Push Operations:

$1 . \delta\left(\mathrm{q}_{0}, 0, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, 0 \mathrm{Z}_{0}\right)$
$2 . \delta\left(\mathrm{q}_{0}, 1, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, 1 \mathrm{Z}_{0}\right)$
$3 . \delta\left(\mathrm{q}_{0}, 0,0\right)=\left(\mathrm{q}_{0}, 00\right)$
$4 . \delta\left(\mathrm{q}_{0}, 1,1\right)=\left(\mathrm{q}_{0}, 11\right)$
This operation will store 0 's or 1 's in the stack.

Pop Operations:

$1 . \delta\left(q_{0}, 0,1\right)=\left(q_{0}, \wedge\right)$
$2 . \delta\left(\mathrm{q}_{0}, 1,0\right)=\left(\mathrm{q}_{0}, \wedge\right)$
$3 . \delta\left(\mathrm{q}_{0}, \wedge, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{\mathrm{f}}, \wedge\right) \quad$ (Accepting by null store)
This operation will remove 0 's corresponding to 1 's on input tape and vice-versa.
This is the required PDA.
Now the processing of the given string " 011001 " as follows:
$\delta\left(\mathrm{q}_{0}, 011001, \mathrm{Z}_{0}\right)\left|----\left(\mathrm{q}_{0}, 11001,0 \mathrm{Z}_{0}\right)\right|----\left(\mathrm{q}_{0}, 1001, \mathrm{Z}_{0}\right)\left|----\left(\mathrm{q}_{0}, 001,1 \mathrm{Z}_{0}\right)\right|----$
$\left(\mathrm{q}_{0}, 01, \mathrm{Z}_{0}\right)\left|----\left(\mathrm{q}_{0}, 1,0 \mathrm{Z}_{0}\right)\right|-----\left(\mathrm{q}_{0}, \wedge, \mathrm{Z}_{0}\right)=\mathrm{q}_{\mathrm{f}}($ the final state $)$.
Hence the given sting is accepted by the designed PDA.
b. What is ambiguity? Show that $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{Sa}| \mathrm{a}$ is an ambiguous grammar.

Answer:

Ambiguity in CFG: A grammar is said to be ambiguous if for any string we have two left or right most derivation trees.
For example, $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \mid \mathrm{E} * \mathrm{E}$ can generate string $\mathrm{E}+\mathrm{E} * \mathrm{E}$ in two ways

Two derivation trees with same yield
Now to show that $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{Sa}| \mathrm{a}$ is ambiguous we need to construct two different trees for same string say $\mathrm{w}=$ aaaa.
$\mathrm{S} \rightarrow \mathrm{aS} \rightarrow \mathrm{aaS} \rightarrow$ aaaS \rightarrow aaaa $\quad(b y \mathrm{~S} \rightarrow \mathrm{aS} \mid \mathrm{a})$
$\mathrm{S} \rightarrow \mathrm{Sa} \rightarrow \mathrm{Saa} \rightarrow \mathrm{Saaa} \rightarrow$ aaaa $\quad($ by $\mathrm{S} \rightarrow \mathrm{Sa} \mid \mathrm{a})$
Hence there exist two different ie; one left most and another right most derivation trees for the given grammar, hence it is ambiguous.
Q. 7 a. What are applications of pumping lemma in Chomsky's normal form?

Convert the given grammar into Chomsky's Nf.
$\mathrm{S} \rightarrow \mathrm{ASB}, \mathrm{A} \rightarrow \mathrm{aAS}|\mathrm{a}, \mathrm{B} \rightarrow \mathrm{SbS}| \mathrm{bB}$
Answer: Page Number 127 of Text Book
b. Find a reduced grammar equivalent to $\mathrm{G}=\left(\mathrm{V}_{\mathrm{N}}, \Sigma, \mathrm{P}, \mathrm{S}\right)$ where set P is given as follows:

$$
\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{~A} \rightarrow \mathrm{a}, \mathrm{~B} \rightarrow \mathrm{~b} \mid \mathrm{C}, \mathrm{D} \rightarrow \mathrm{c}
$$

Answer:

Step 1(Removal of extra variables)
Construction of V_{N} :
Let us construct $\mathrm{W}_{1}=\{\mathrm{A}, \mathrm{B}, \mathrm{D} \mid$ as $\mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$ and $\mathrm{D} \rightarrow \mathrm{c}$ are productions with a terminal string on the R.H.S. $\}$
$\mathrm{W}_{2}=\mathrm{W}_{1} \cup\left\{\mathrm{X} \in \mathrm{V}_{\mathrm{N}} \mid \mathrm{X} \rightarrow \alpha\right.$ for some $\left.\alpha \in\left(\mathrm{W}_{1}{ }^{*} \cup \Sigma\right)\right\}$ $=\{S, A, B, D\}$
Similarly $\mathrm{W}_{3}=\mathrm{W}_{2} \cup\left\{\mathrm{X} \in \mathrm{V}_{\mathrm{N}} \mid \mathrm{X} \rightarrow \alpha\right.$ for some $\left.\alpha \in\left(\mathrm{W}_{2}{ }^{*} \cup \Sigma\right)\right\}=\mathrm{W}_{2}$
$\cup \phi=\mathrm{W}_{2}$
Therefore $\mathrm{V}_{\mathrm{N}}{ }^{\prime}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{D}\}$ and hence $\mathrm{P}^{\prime}=\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{D}$
$\rightarrow \mathrm{c}$.

$$
\text { Thus } \mathrm{G}^{\prime}=\left(\mathrm{V}_{\mathrm{N}}^{\prime}, \Sigma, \mathrm{P}^{\prime}, \mathrm{S}\right)
$$

Step 2(Removal of useless productions)
Construction of V_{N} ":

$$
\mathrm{W}_{1}=\{\mathrm{S}\}
$$

$\mathrm{W}_{2}=\mathrm{W}_{1} \cup\left\{\mathrm{X} \in \mathrm{V}_{\mathrm{N}} \cup \Sigma \mid\right.$ there is a production $\mathrm{A} \rightarrow \alpha$ with $\mathrm{A} \in \mathrm{W}_{1}$ and α containing X$\}$
$W_{2}=\{S\} \cup\{A, B\}=\{S, A, B\}$
$\mathrm{W}_{3}=\mathrm{W}_{2} \cup\{\mathrm{a}, \mathrm{b}\}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{a}, \mathrm{b}\}$
$\mathrm{W}_{4}=\mathrm{W}_{3}$
Thus $\mathrm{V}_{\mathrm{N}}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$ and $\mathrm{P} "=\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$.
Hence reduced grammar $G^{\prime \prime}=\left\{V_{N} "=\{S, A, B\}, \Sigma=(a, b), P^{\prime \prime}, S\right\}$
Q. 8 a. Design a Turing machine that recognizes all strings of even length over $\Sigma=(\mathrm{a}, \mathrm{b})^{*}$

Answer:

We construct the machine as follows:

(a, e, R), (b, e, R)
To accept all strings over (a, b) of even length, we need two states to construct a loop from one to another. Let q_{0} be the initial and final state. On reading either a or b at state q_{0} machine goes to q_{1} writes e (empty) on the input tape and moves to right direction. Similarly On reading either a or b at q_{1} machine writes e (empty) on the input tape goes to state q_{0} and moves to right direction. Hence it accepts all strings of even length over (a, b) ${ }^{*}$.
Hence TM M $=\left\{\left(\mathrm{q}_{0}, \mathrm{q}_{1}\right),(\mathrm{a}, \mathrm{b}), \mathrm{q}_{0}, \delta, \Gamma=(\mathrm{a}, \mathrm{b}, \mathrm{e}),(\mathrm{L} / \mathrm{R}),\left\{\mathrm{q}_{0}\right\}\right\}$ where the transition function δ is defined as above. It can be defined as transition table as follows:

State	Input	
	a	b
q_{0}	$\mathrm{e}, \mathrm{R}, \mathrm{q}_{1}$	$\mathrm{e}, \mathrm{R}, \mathrm{q}_{1}$
q_{1}	$\mathrm{e}, \mathrm{R}, \mathrm{q}_{0}$	$\mathrm{e}, \mathrm{R}, \mathrm{q}_{0}$

b. Write short note on universal Turing machine.

Answer:

A universal Turing machine is one that can be used to simulate any other Turing machine.

There exists a luniversal" Turing machine U that, on input $<\mathrm{M}, \mathrm{w}>$ where M is a TM and $\quad W$ is a sting over $(0,1)^{*}$, simulates the computation of M on input w. Specifically:

1. U accepts $<\mathrm{M}$, w> iff M accepts w
2. U rejects $<\mathrm{M}$, $\mathrm{w}>$ iff M rejects w
Q. 9 a. Prove that if a language L and it's complement L ' are both recursively enumerable, then L is recursive.

Answer:

Let TM_{1} and TM_{2} accept L and L^{\prime} respectively. Let us construct a turing machine TM which simulate TM_{1} and TM_{2} simultaneously. TM accepts w if TM_{1} accepts it and rejects w if TM_{2} will accepts it. Thus TM
will
not a but it is accepts always say either "yes" or "no", but not both. Note that there is priority limit on how long it may take before TM_{1} or TM_{2} accepts, certain that one or the other will do so. Since TM is algorithm that L , it follows that L is recursive.

b. Define Post corresponding Problem (PCP). Check whether the following instance has no solution over $\Sigma=\{0,1\}$. X and Y be the lists of the three strings as follows:

	List A	List B
i	w_{i}	x_{i}
1	1	111
2	10111	10
3	10	0

Answer:

PCP: An instance of PCP consists of two lines of strings over some alphabet Σ; the two lists must be equal length. We generally refer to the A and B lists, and write $A=w_{1}, w_{2}, \ldots, w_{k}$ and $B=x_{1}, x_{2}, \ldots, x_{k}$, for some integer k. For each i, the pair $\left(\mathrm{w}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)$ is said to be a corresponding pair.

We say this instance of PCP has a solution, if there is a sequence of one or more integers $i_{1}, i_{2}, \ldots, i_{m}$ that, when interpreted as indexes for strings in the A and B lists, yield the same string. That is, $\mathrm{w}_{\mathrm{i} 1} \mathrm{~W}_{\mathrm{i} 2} \ldots \mathrm{w}_{\mathrm{im}}=\mathrm{x}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \ldots \mathrm{x}_{\mathrm{im}}$. We say the sequence $i_{1}, i_{2}, \ldots, i_{m}$ is a solution to this instance of PCP, if so. The Post correspondence problem is:
"Given an instance of PCP, tell whether this has a solution."
Consider the problem given above

	List A	List B
i	w_{i}	x_{i}
1	1	111
2	10111	10
3	10	0

Let $\mathrm{m}=4, \mathrm{i}_{1}=2, \mathrm{i}_{2}=1, \mathrm{i}_{3}=1$, and $\mathrm{i}_{4}=3$, i.e; the solution is the list $2,1,1,3$. This list is a solution by concatenating the corresponding strings in order for the two lists. That is, $\mathrm{w}_{2} \mathrm{~W}_{1} \mathrm{~W}_{1} \mathrm{w}_{3}=\mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{1} \mathrm{X}_{3}=101111110$.
Thus, in this case PCP has a solution.

Text Book

Introduction to Automata Theory, Languages and Computation, John E Hopcroft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education, Third Edition, 2006

